Classroom Techniques to Motivate Students
Workshop by Sarah Bean Sherman (bean@eoas.ubc.ca) and Emily Scribner (escibne@eoas.ubc.ca), University of British Columbia, Vancouver, Canada

An alternative framework for motivation

<table>
<thead>
<tr>
<th>Motivational Factor</th>
<th>Related Equity & Inclusion factors</th>
<th>Notes / instructional strategies</th>
</tr>
</thead>
</table>
| Personal relevance and interest | Learners’ goals, interests, and values | • Use real-world contexts and problems as much as possible
• Remember that different students find different things to be interesting, and different goals
• Find out what students’ goals are; let them express those goals and why they are important to them.
• Connect course material explicitly to future courses or career directions
• Highlight explicitly how students are developing as scientists
• Have students reflect on connections between what they are learning and their own goals and development as a scientist
• Share your own enthusiasm for the subject (but remember there can be other reasons to find the subject interesting too) |
| Development as a person in STEM | | |
| Choice and control | Multiple ways to productively participate | With guidelines to keep within learning goals of the course:
• Have students vote on optional topics to include in curriculum
• Have students choose their own topic for a project or assignment
• Have students design their own problem to solve / research
• Give students a say in how to manage assignments and grading policies |
| Learners’ goals, interests, and values | | |
| Belief that one can achieve one’s goals: master the course material / develop as a scientist | Beliefs about learning, achievement and teaching | • Project high expectations
• Acknowledge existence of, and reduce conditions for, stereotype threat / identity threat
• Choose appropriate level of challenge
• Give opportunities for early successes
• Encourage students to view intelligence as a malleable rather than fixed trait
• Emphasize importance of practice, and provide opportunities to reflect on how their practice leads to improvement
• Highlight explicitly how students are developing as scientists
• Provide opportunities where students act authentically as scientists (e.g., take, analyze, and present own data)
• Make norms of scientific discourse explicit
• Give students pre-class assignments to help prepare |
| Development as a person in STEM | | |
Classroom Techniques to Motivate Students
Workshop by Sarah Bean Sherman (bean@eoas.ubc.ca) and Emily Scribner (scribne@eoas.ubc.ca), University of British Columbia, Vancouver, Canada

From: Motivating Learning (by Carl Wieman Science Education Initiative) and Framework for Equity and Inclusion (by Institute for Scientist & Engineer Educators)

- http://isee.ucsc.edu/programs/pdp/equity-inclusion.html

```
Environment is NOT SUPPORTIVE           Environment is SUPPORTIVE

DON'T see value     SEE value     DON'T see value     SEE value

Rejecting          Hopeless      Rejecting          Fragile

Evading            Defiant       Evading            Motivated

*Self-efficacy: one’s belief in one’s ability to succeed
```

Ambrose et al., 2010