Exploring Approaches to Grading:
Philosophies & Methods for Assessment & Feedback
Michael Nassir — Instructor, Dept. of Physics & Astronomy — nassir@hawaii.edu
Spring 2016

What is Being Assessed? ... Progress toward Goals

Goals/Objectives can exist at all levels
• Goals/objectives for a single section, chapter, or unit, or for entire course

1. Content Goals
• Theories, formulas, terminology & vocabulary... “what” and “why” of your subject
• Example: Law of Falling Bodies (all masses fall with the same constant acceleration) & related formulas

2. Practices (Process Skills)
• Thought processes, tools, skills, etc., used in the application of content goals... “how” people carry out work in your subject
• Examples:
 o Deriving new equations from other formulas
 o Using laboratory equipment & choosing the best/correct tool for the task
 o Keeping a proper lab notebook & recording data
 o Repeating measurements & combining them statistically
 o Applying the scientific method & deriving valid conclusions from data
 o Using scientific style for writing & speaking
 o Working productively with partners/colleagues

3. Attitudinal Goals
• Individual feelings of enjoyment, interest, seriousness, fun, ethical importance, etc., associated with subject matter

4. Community-Building Goals
• Classroom established as place of learning, inquiry, openness, acceptance, etc.
• Sense of belonging to larger field-of-study (e.g., larger community of astronomers or chemists)

Formative vs. Summative Assessment

Formative Assessment
• During project or task, “on-the-fly”
• Often is informal (no records or scores)
• Can be recorded as formal notes, impressions, or scores — examples: points for keeping good records, employing new skills, good teamwork, staying on task, etc.
• Examples:
 o Classroom “facilitation”
 ▪ Circulate through class during lab experiment, small-group discussions, etc.
 ▪ Listen first!
 ▪ Ask questions (usually “Socratic”) to help students clarify their ideas, move away from erroneous conclusions, or adhere to desired task goals
 o In-class clicker questions
 o Very short mini-quizzes

Summative Assessment
• At end of project, task, or unit of study
• Usually is formal — end-of-unit exams, final course exam, final course letter grade
• Should use clearly articulated rubrics, grading matrices, or other tools to provide structure and objectivity (see below)
TA Responsibilities Vary Widely!

- **Minimal**: grading assignments, holding office/tutoring hours, maybe attending lectures
- **Maximal (conducting entire course)**: preparing & delivering weekly mini-lectures; writing quizzes; determining requirements, formats, and grading criteria for lab reports; calculating final letter grades (example: Intro Physics labs)
- **Somewhere in between**: (example: Organic Chemistry labs, Biology 275 lecture)

Tools for Grading & Assessment

Use a Quantitative Basis for Scoring

- Use numerical “points” (instead of letter grades) on individual assignments, exams, lab reports
- Award partial credit for correct steps/methods, even if final “answer” is wrong

Scoring Single Questions or Problems:

- Create a “**mini-matrix**” or “**mini-rubric**” for each question (or part of question) — this makes partial credit easy to award

 Example:

 2 pts. Correct formula and setup
 2 pts. Correct calculation steps and substitutions
 1 pt. Correct units and significant figures on final answer

 Total

- **Choose a maximum score** that is:
 - Not “too coarse” (too few points possible)
 - Not “too fine” (too many points possible)
 - Fractional points? … Avoid them!

- Score the **same question** on all papers before proceeding to the next question
- Establish a mental “curve” for partial-credit as your grading proceeds on a single question
- Trust your judgment!

Scoring Lab Reports, Essays, and Large Projects:

- Use a **rubric** with detailed descriptions of levels of accomplishment (see next section: **Rubrics**)

- Or use a **matrix** (like a highly simplified **rubric**) to give basic breakdown of points (see next section: **Basic Point Matrix**)

- Fill in a **blank rubric or matrix sheet** while grading, then attach to graded report

- Distribute your matrix or rubric at **start of course** (with initial course syllabus) or **when task is first assigned**

- Can accompany with **exemplar(s)** of excellent student work (get student’s permission and remove names or identifiers) or create your own sample report
 - **Note**: This can be hard to do without giving away the “answers”!

- **Don’t be too lax or too harsh** in your scoring!
 - Talk with supervising professor & other TAs, and be **consistent** with them.
 - Strive for a **spread** of scores.
Rubrics

• Examples — see Manoa Assessment Office website: http://manoa.hawaii.edu/assessment — links: “Create Rubrics” and “Rubric Bank”

• **Performance Criteria (Characteristics)** axis

 o Itemizes **content, skills, and/or behavior** expected (and which will be evaluated) in assignment
 o Each criterion is given a **relative weight** (either percentage or integer multiplier factor)

• **Evaluative Range (Level of Mastery)** axis

 o When multiplied by a criterion’s **weight**, this value translates to **points**

 o Most rubrics employ between 3 and 6 levels. I recommend ~5 levels:

 4 = **Exceeds** criterion/expectations <= reserved for truly exceptional work
 3 = **Fully meets** criterion/expectations <= this is “full credit”
 2 = **Approaches** criterion/expectations
 1 = **Beginner**-level execution of criterion
 (0 = Criterion **absent** in work)

 o Choose a scale that is not too **coarse**, not too **fine**!
 o Stick to **integer values** when evaluating.

• **Grid**

 o When first distributed, rubric grid contains (somewhat repetitive) **performance descriptions** in each and every square

 o Can use an **empty matrix** for actual scoring (**same axes**, but with descriptions stripped out)

 • Distribute rubric at **start** of course (with initial course syllabus) or when task is first assigned... **not** when the graded assignment is returned!

<table>
<thead>
<tr>
<th>Design Project Assessment Rubric (sample analytic rubric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course No.:</td>
</tr>
<tr>
<td>Team/Student:</td>
</tr>
<tr>
<td>Topic (Weight)</td>
</tr>
<tr>
<td>Design Problem and Boundaries (1)</td>
</tr>
<tr>
<td>Alternative Designs (2)</td>
</tr>
<tr>
<td>Use of Computer-Aided Tools (2)</td>
</tr>
<tr>
<td>Application of Engineering Principles (2)</td>
</tr>
<tr>
<td>Final Design (3)</td>
</tr>
<tr>
<td>Process Economics (1)</td>
</tr>
<tr>
<td>Interpretation of Results (2)</td>
</tr>
<tr>
<td>OVERALL PERFORMANCE</td>
</tr>
<tr>
<td>POINTS REQUIRED</td>
</tr>
</tbody>
</table>

Rubric shared by Connie M. Schroeder, University of Wisconsin-Milwaukee on the POD listerv, April 14, 2008.
Another sample rubric, for Oral Presentations:

Sample Rubrics Packet
From Danielle D. Stevens, Ph.D.,
3 to 5 level Rubric Example

Changing Communities in Our City

<table>
<thead>
<tr>
<th>Task Description: Each student will make a 5 minute presentation on the changes in one Portland community over the past 30 years. The student may focus the presentation in any way s/he wishes, but there needs to be a thesis of some sort, not just a chronological exposition. The presentation should include appropriate photographs, maps, graphs, and other visual aids for the audience.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Knowledge/Understanding</th>
<th>Excellent</th>
<th>Competent</th>
<th>Needs work</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>The presentation demonstrates a depth of historical understanding by using relevant and accurate detail to support the student’s thesis. Research is thorough and goes beyond what was presented in class or in the assigned text.</td>
<td>The presentation uses knowledge which is generally accurate with only minor inaccuracies, and which is generally relevant to the student’s thesis. Research is adequate but does not go much beyond what was presented in class or in the assigned text.</td>
<td>The presentation uses little relevant or accurate information, not even that which was presented in class or in the assigned text. Little or no research is apparent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thinking/Inquiry</th>
<th>Excellent</th>
<th>Competent</th>
<th>Needs work</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>The presentation is centered around a thesis which shows a highly developed awareness of historiographic or social issues and a high level of conceptual ability.</td>
<td>The presentation shows an analytical structure and a central thesis, but the analysis is not always fully developed and/or linked to the thesis.</td>
<td>The presentation shows no analytical structure and no central thesis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication</th>
<th>Excellent</th>
<th>Competent</th>
<th>Needs work</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>The presentation is imaginative and effective in conveying ideas to the audience. The presenter responds effectively to audience reactions and questions.</td>
<td>Presentation techniques used are effective in conveying main ideas, but a bit unimaginative. Some questions from the audience remain unanswered.</td>
<td>The presentation fails to capture the interest of the audience and/or in confusing in what is to be communicated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of Visual Aids</th>
<th>Excellent</th>
<th>Competent</th>
<th>Needs work</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>The presentation includes appropriate and easily understood visual aids which the presenter refers to and explains at appropriate moments in the presentation.</td>
<td>The presentation includes appropriate visual aids, but there are too few, in a format that makes them difficult to use or understand, and/or the presenter does not refer to or explain them in the presentation.</td>
<td>The presentation includes no visual aids or visual aids that are inappropriate, and/or too small or muddy to be understood. The presenter makes no mention of them in the presentation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presentation Skills</th>
<th>Excellent</th>
<th>Competent</th>
<th>Needs work</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>The presenter speaks clearly and loudly enough to be heard, using eye contact, a lively tone, gestures, and body language to engage the audience.</td>
<td>The presenter speaks clearly and loudly enough to be heard, but tends to drone and/or fails to use eye contact, gestures, and body language consistently or effectively at times.</td>
<td>The presenter cannot be heard and/or speaks so unclearly that s/he cannot be understood. There is no attempt to engage the audience through eye contact, gestures, or body language.</td>
</tr>
</tbody>
</table>

8/16/11 – Introduction to Rubrics, Stevens & Levi
Basic Point “Matrix”

• A matrix shows basic breakdown of possible points

• Can simply list items, without descriptions of what full credit or ideal work looks like:

 Example: 3 pts. Statement of Goal/Objective
 7 pts. Introduction & Theory
 5 pts. Procedure & Apparatus
 15 pts. Data
 15 pts. Calculation, Graphing & Results, Error Propagation
 5 pts. Conclusions & Analysis of Sources of Error
 50 pts. Total

• …Or can include brief descriptions of what fully met expectations looks like:

 Example: (from sophomore/junior-level physics lab)

<table>
<thead>
<tr>
<th>Grading Criteria for PHYS 274L Written Reports</th>
<th>NAME: ____________________</th>
<th>Exp. # _____ TOTAL:__________</th>
</tr>
</thead>
</table>

1) ABSTRACT: (5 pts.)
 a) Objective(s): (1 pts.)
 i. States, clearly and briefly, the purpose of the experiment.
 ii. States, clearly and briefly, the quantities to be measured.
 b) Method Summary: (2 pts.)
 i. Describes the overall setup, materials, and procedures used.
 c) Results Summary: (2 pts.)
 i. Overall results are given.

2) INTRODUCTION: (5 pts.)
 a) Includes one or both of the following:
 i. Scientific and/or historical significance of the experiment.
 ii. Historical results and those from other sources and methods (e.g. Handbook of Chemistry and Physics).

3) PROCEDURE/METHOD: (10 pts.)
 a) Procedure:
 i. Clearly describes apparatus.
 ii. Clearly describes the reasoning behind the setup.
 b) Figures:
 i. Figures have captions.

4) THEORY: (10 pts.)
 a) Derivation of principal formula(s):
 i. Logical and correct.
 ii. All assumptions are stated.
 iii. All variables are defined.

5) DATA & CALCULATIONS: (40 pts.)
 a) Raw Data: (10 pts.)
 i. Gives units and uncertainties, either estimated or calculated.
 ii. In table, if several values
 b) Calculated Data: (20 pts.)
 i. Gives propagated uncertainties with appropriate units.
 c) Charts and graphs: (10 pts.)
 i. Gives units, error bars, and labeled axes.
 ii. Has informative caption/title.
 iii. Significant points are identified.

6) CONCLUSION: (10 pts.)
 a) Results: (5 pts.)
 i. Gives results with uncertainties.
 ii. Gives the meaning of the result in the context of theory and previous experiments.
 b) Accuracy of results and limitations on accuracy: (5 pts.)
 i. Gives the accuracy of the result stated.
 ii. Considers the limitations of the results (i.e. what was the limiting factor in terms of accuracy?)

7) OVERALL: (20 pts.)
 a) All references/materials cited: (3 pts.)
 b) Spelling & grammar, appropriate physical vocabulary, clarity of writing: (10 pts.)
 c) Title, well-organized, clear layout/format: (7 pts.)

• Distribute the matrix at start of course (with initial course syllabus) or when task is first assigned… not when the graded assignment is returned!
Meaning & Implications of Final Course Grades

UH Manoa Definitions (from p. 15 of 2014–2015 UH Manoa Catalog)

A+, A, A– = “excellent”
B+, B, B– = “above average”
C+, C = “average”
C–, D+, D, D– = “minimal passing”
F = “failure”

CR = “C” or above; NC = “C–” or below

What Really Is an Undergraduate “Passing” Grade?

• “C” not “C–” is lowest passing grade for many major-required courses and prerequisites
• “D” not “D–” is lowest passing grade for all core and gen-ed courses
• “D–” is lowest passing grade for general credit

Variations

• Undergrad science LAB grades (and grade curves) are typically more forgiving than lecture grades
 o Labs tend to stress participation, comprehensive write-ups, and collaborative work
 o Science labs: “A” = good to excellent
 “B” = adequate to good
 “C” = below average, but completed all work
 “D” or “F” = missing some experiments or lab reports

• Graduate student grades are typically higher than undergraduate!
 o UH Manoa graduate grade definitions: (from p. 39 of 2014–2015 UH Manoa Catalog)
 A+, A, A– = “high achievement” (above-average to excellent)
 B+, B, B– = “meets expectations” (adequate/average)
 C+, C, C– = “below expectations” (usually means inadequate to failing)
 D+, D, D– = “inadequate performance” (usually means total failure)
 F = “failure”
 o Some departments limit the number of “C” grades that a grad student can have (and still qualify for master’s degree) without repeating courses.

Incompletes

• Incomplete “I” grades should be given to undergraduates only in cases of extenuating circumstances beyond the student’s control (family emergencies, medical emergencies, etc.)
 “A grade of I is given to a student who has not completed a small but important part of a semester’s work if the instructor believes that the incomplete was caused by conditions beyond the student’s control.” (p.15 of 2014–2015 UH Manoa Catalog)
 o Use “I” grades late in the semester, when only a minority of coursework remains to be done. If still early in the semester, encourage students instead to petition for a “late drop” or to withdraw (“W” grade), and to retake the course from the beginning.
 o “I” grades must be accompanied by a reversion grade. They automatically change into the reversion grade if not replaced by a letter grade by Apr. 1 or Nov. 1 of the following semester.

• For graduate-student rules regarding Incomplete grades, see p. 40 of 2014–15 UH Manoa Catalog.
Calculating Final Course Grades

• Course grades are usually based on percentage/fraction of possible points earned

• Be sure to state weighting/breakdown in initial course syllabus:

 Example: 10% Homework
 10% Quizzes
 20% Midterm #1
 20% Midterm #2
 40% Final Exam
 100% Total

• Design exam questions throughout course to achieve large spread in overall scores
 o Include some easy, some moderate, and a few challenging questions
 o A broad range in student scores makes application of a “curve” easier (see below)

Using a “Curve”

Advantages of using a “curve” (example: 20% A’s, 25% B’s, 25% C’s, 30% D’s & F’s):
 o Works well with large classes (> 100 students)
 o Counteracts exams that are too hard or too easy (and similar problems due to course inexperience)
 o Counteracts instructor-to-instructor differences — “shape” of curve can be determined by department (e.g., all Physics 151L lab TAs are required to apply similar curves)

Disadvantages:
 o Bad for small classes & labs (20 or 25 students)
 o Demoralizes students; promotes student competition instead of collaboration
 o Students can’t calculate/estimate own grade, and don’t know grade cutoffs until end of course

“CURVE” PHILOSOPHY: Final grades represent students’ relative performance.

Using “Straight” (Flat) Percentages

Example: >90%: A; >80%: B; >70%: C; >60%: D; <60%: F)
 (or, for “tougher” courses: >85%: A; >70%: B; >55%: C; >40%: D; <40%: F)
 o Best for experienced teachers already familiar with course and typical student ability
 o “Everyone can get an A” (theoretically) — good for small and advanced courses
 o Students CAN calculate/estimate own grade, and DO know grade cutoffs from the start of course

“STRAIGHT” PHILOSOPHY: Final grades represent students’ absolute performance.

Using a Straight-Curve “Hybrid”

Example: “A total course score of >90% guarantees a course grade of A– or better; >80% guarantees a B– or better; etc.; BUT these cutoffs may be lowered at the discretion of the instructor during final grade calculation.”

• Be explicit whether plus/minus grades will be used (or deliberately not used)

• Strive for consistency with departmental policy/tradition and with other TAs’ grading policies
 o Example: D’s and F’s are rarely included in science lab curves, and are usually reserved for students with missing work
Keeping Records

• Keep thorough electronic records of all grades (like an Excel spreadsheet)
• Retain unclaimed assignments, exams, etc. (that are not returned to students) through the end of the following semester. (UH Manoa policy)
• I recommend that you keep your final gradesheets forever.
 o Export a final copy of all online assignments & scores from Laulima or any classroom management system.
 o Archive a paper copy of your final gradesheet. Leave a copy with your supervising professor and/or department office.

Dealing with Cases of Academic Dishonesty

• If cheating/plagiarism is suspected, make photocopies & prepare evidence to take to supervising professor
• Meet with offending student(s) alongside professor, show the evidence, and let the student respond to the allegation
• Decide on appropriate penalty with professor, and decide on referral to Office of Judicial Affairs (or not)
• Student has right to appeal your action (first to Dept. Chair, then Assoc VC Students, then to Academic Grievance Committee)

For UH Manoa definitions of “cheating” and “plagiarism” and related policies, see “Campus Policies” on pp. 79–80 of the 2014–2015 UH Manoa Catalog. Page 80 goes on to describe an instructor's options for “Disciplinary Action”:
"The faculty member must notify the student of the alleged academic misconduct and discuss the incident in question. The faculty member may take academic action against the student as the faculty member deems appropriate. These actions may be appealed through the Academic Grievance Procedure, available in the Office of Judicial Affairs. In instances in which the faculty member believes that additional action (i.e., disciplinary sanctions and a UH Manoa record) should be established, the case should be forwarded to the Office of Judicial Affairs [Queen Lili'uokalani Center for Student Services, Rm. 207]."