Exploring Approaches to Grading:
Philosophies & Methods for Assessment & Feedback
Michael Nassir — Instructor, Dept. of Physics & Astronomy — nassir@hawaii.edu
Spring 2019

Grading is... Assessment of Student Progress toward Goals/Outcomes

Backward Design: When designing a course, activity, or grading method, start with Goals/Outcomes.

Goals/Outcomes can exist at all levels:
• Goals/objectives for a single section, chapter, or unit, or for entire course

Goals vs. Outcomes (a.k.a. Objectives or SLOs)?
• Goals are often high-level or aspirational, and are often not directly measurable/assessable:
 o “Upon successful completion of this course, students will know/understand X.” or
 “Students will appreciate Y.”
• Outcomes (SLOs) parallel the goals. Outcomes are measurable/assessable ways that students
 can demonstrate their achievement of goals:
 o “Upon successful completion of this course, students shall be able to calculate X, demonstrate Y, create Z, derive W, etc.”

1. Content Goals
 • Concepts, theories, formulas, terminology & vocabulary — the what & why of your subject
 • Examples (from physics):
 o Acceleration — conceptual meaning, formula definition, units
 o The Law of Falling Bodies (all masses fall with the same constant acceleration) & related formulas of kinematics
 o Newton’s 2nd Law — conceptual meaning, formula ($F_{tot} = m\cdot a$), conditions when valid
 o The Principle of Conservation of Angular Momentum — conceptual meaning, formula, conditions when valid

2. Practices (Process Skills)
 • Thought-processes, tools & skills used when applying the above concepts — how people carry out work in your subject
 • Examples:
 o Applying physics formulas to arrive at a quantitative numerical result for a descriptive situation
 o Applying physics formulas to determine the proportional dependence of certain physical quantities on others
 o Combining multiple formulas to derive new expressions
 o Using laboratory equipment & choosing the best/correct tool for the task
 o Keeping a proper lab notebook & recording data
 o Repeating measurements & combining them statistically
 o Applying the scientific method & deriving valid conclusions from data
 o Using scientific style for writing & speaking
 o Working productively with partners/colleagues

3. Attitudinal Goals
 • Individual feelings of enjoyment, interest, seriousness, fun, ethical importance, etc., associated with subject matter

4. Community-Building Goals
 • Classroom established as place of learning, inquiry, openness & acceptance
 • Sense of belonging to larger field-of-study (e.g., larger community of astronomers, chemists, etc.)
Formative vs. Summative Assessment

Formative Assessment
• During project or task, “on-the-fly,” in real-time
• Often informal — no records or scores
• Can be recorded as formal notes, impressions, or scores — examples: points for keeping good experimental records, employing recently taught skills, good teamwork, staying on task, etc.
• Examples:
 o Classroom “facilitation”
 ▪ Circulate through class during lab experiment, small-group discussions, etc.
 ▪ Listen first!
 ▪ Ask questions (usually “Socratic”) to help students clarify their ideas, move away from erroneous conclusions, or adhere to desired course/unit goals
 o In-class clicker questions or other voting method
 o Very short mini-quizzes, perhaps scored by classmate & quickly returned to student

Summative Assessment
• At end of project, task, or unit of study
• Usually formal — end-of-unit exams, final course exam, final course letter grade
• Should use clearly articulated rubrics, grading matrices, or other tools to provide structure and objectivity (see below)

UH Manoa TA Responsibilities Vary Widely!
• Minimal: grading assignments, holding office/tutoring hours, maybe attending lectures
• Maximal (conducting entire course): preparing & delivering weekly mini-lectures; writing quizzes; determining requirements, formats, and grading criteria for lab reports; calculating final letter grades (example: Intro Physics labs)
• Somewhere in between: (example: Organic Chemistry labs, Biology 275 lecture)
Tools for Grading & Assessment

Use a Quantitative Basis for Scoring

- Use numerical points (instead of letter grades) on individual assignments, exams, lab reports
- Award partial credit (when possible) for correct steps/methods, even if final answer is wrong

Scoring Single Questions or Problems:

- Create a mini-matrix or mini-rubric for each question (or part of question) — this makes partial credit easy to award:

 Additive Example:

 +2 pts. Correct formula and setup
 +2 pts. Correct calculation steps and substitutions
 +1 pt. Correct units on final answer
 +1 pt. Correct significant figures on final answer

 = 6 pts. Total Points Possible (Earned)

 Subtractive Example:

 6 pts. Total Points Possible
 −1 to −3 pts. Mild to serious error(s) in initial formula or setup
 −2 pts. Calculation or substitution errors
 −1 pt. Incorrect units or significant figures on final answer

 = X pts. Points Remaining (Earned)

- Choose a maximum (total possible) score that is…
 - Not “too coarse” (too few points possible)
 - Not “too fine” (too many points possible)
 - Avoid fractional/decimal points!

- Score the same question on all papers before proceeding to the next question
 - Establishes a mental “curve” and consistency for partial-credit as your grading proceeds on a single question
 - Aids with speed — you will quickly memorize the solution and recognize common errors
 - Trust your judgment!

Scoring Large Lab Reports, Essays, and Projects:

- Use a rubric with detailed descriptions of levels of accomplishment (see next section: Rubrics)

- Or use a “matrix” (like a highly simplified rubric) to give basic breakdown of points (see next section: Basic Point Matrix)

- Fill in a blank rubric or matrix sheet while grading, then attach to graded report

- Distribute your matrix or rubric at start of course (with initial course syllabus) or when task is first assigned

- Can accompany with exemplar(s) of excellent student work (get student’s permission and remove names or identifiers) or create your own sample report
 - Note: This can be hard to do without “giving away the answer”!

- Don’t be too lax or too harsh in your scoring!
 - Talk with supervising professor & other TAs, and be consistent with them. Hold a rubric/scoring norming session to establish common expectations.
 - Strive for a spread of scores.
Rubrics

- **Examples** — see Manoa Assessment Office website: http://manoa.hawaii.edu/assessment — links: “Create Rubrics” and “Rubric Bank”

- **Performance Criteria (Characteristics) axis**
 - Itemizes **content, skills, and/or behavior** expected (and which will be evaluated) in assignment
 - Each criterion is given a **relative weight** (either percentage or integer multiplier factor)

- **Evaluative Range (Level of Mastery) axis**
 - When multiplied by a criterion’s **weight**, this value translates to **points**
 - Most rubrics employ between 3 and 6 levels. I recommend 4–5 levels:
 - 4 = **Exceeds** criterion/expectations — reserved for truly exceptional work
 - 3 = **Meets** criterion/expectations — this is “full credit”
 - 2 = **Approaches** criterion/expectations
 - 1 = **Beginner**-level execution of criterion
 - 0 = Criterion is **absent** in work
 - Choose a scale that is not too coarse, not too fine!
 - Stick to **integer values** when evaluating.

- **Grid**
 - When first distributed, rubric grid contains (somewhat repetitive) **performance descriptions** in each and every square
 - Can use an **empty matrix** for actual scoring (**same axes**, but with descriptions striped out)

 - Distribute rubric at **start** of course (with initial course syllabus) or when task is first assigned... **not** when the graded assignment is returned!

This column should reflect & match desired Outcomes for activity (and course)!

Design Project Assessment Rubric
(same analytic rubric)

<table>
<thead>
<tr>
<th>Topic (Weight)</th>
<th>Unacceptable (0)</th>
<th>Marginal (1)</th>
<th>Acceptable (2)</th>
<th>Exceptional (3)</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Problem and Boundaries (1)</td>
<td>Little or no grasp of problem, incapable of producing a successful solution.</td>
<td>Some understanding of problem, major deficiencies that will impact the quality of solution.</td>
<td>Overall sound understanding of the problem and constraints, Does not significantly impair solution.</td>
<td>Clear and complete understanding of design goal and constraints.</td>
<td></td>
</tr>
<tr>
<td>Alternative Design (2)</td>
<td>Only one design presented or clearly inferior alternative given.</td>
<td>Serious deficiencies in exploring and identifying alternative designs.</td>
<td>Alternative approaches identified to some degree.</td>
<td>Final design achieved after review of reasonable alternatives.</td>
<td></td>
</tr>
<tr>
<td>Use of Computer-Aided Tools (3)</td>
<td>Serious deficiencies in understanding the correct selection and/or use of tools.</td>
<td>Minimal application and use of appropriate tools.</td>
<td>Computer-aided tools used with moderate effectiveness to develop designs.</td>
<td>Computer-aided tools are used effectively to develop and analyze design.</td>
<td></td>
</tr>
<tr>
<td>Application of Engineering Principles (2)</td>
<td>No or erroneous application of engineering principles yielding unreasonable solution.</td>
<td>Serious deficiencies in proper selection and use of engineering principles.</td>
<td>Effective application of engineering principles resulting in reasonable solution.</td>
<td>Critical selection and application of engineering principles ensuring reasonable results.</td>
<td></td>
</tr>
<tr>
<td>Process Economics (1)</td>
<td>No or totally erroneous cost estimates presented.</td>
<td>Reasonable cost estimates presented, but no profitability analysis included.</td>
<td>Reasonable profitability analysis presented, but no interpretation of the results</td>
<td>Effective use of profitability analysis leading to improvement recommendations.</td>
<td></td>
</tr>
<tr>
<td>Interpretation of Results (2)</td>
<td>No or erroneous conclusions based on achieved results.</td>
<td>Serious deficiencies in support of stated conclusions.</td>
<td>Sound conclusions reached based on achieved results.</td>
<td>Insightful, supported conclusions and recommendations.</td>
<td></td>
</tr>
<tr>
<td>OVERALL PERFORMANCE</td>
<td>Unacceptable</td>
<td>Marginal</td>
<td>Acceptable</td>
<td>Exceptional</td>
<td>TOTAL</td>
</tr>
<tr>
<td>POINTS REQUIRED</td>
<td>0–9</td>
<td>10–19</td>
<td>20–29</td>
<td>30–39</td>
<td></td>
</tr>
</tbody>
</table>

Rubric shared by Connie M. Schroeder, University of Wisconsin-Milwaukee on the FOD listserv, April 14, 2008.
Another sample rubric, for Oral Presentations:

Sample Rubrics Packet
From Dannelle D. Stevens, Ph.D.

3 to 5 level Rubric Example

Changing Communities in Our City

Task Description: Each student will make a 5 minute presentation on the changes in one Portland community over the past 30 years. The student may focus the presentation in any way s/he wishes, but there needs to be a thesis of some sort, not just a chronological exposition. The presentation should include appropriate photographs, maps, graphs, and other visual aids for the audience.

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Competent</th>
<th>Needs work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge/Understanding</td>
<td>The presentation demonstrates a depth of historical understanding by using relevant and accurate detail to support the student’s thesis. Research is thorough and goes beyond what was presented in class or in the assigned texts.</td>
<td>The presentation uses knowledge which is generally accurate with only minor inaccuracies, and which is generally relevant to the student’s thesis. Research is adequate but does not go much beyond what was presented in class or in the assigned text.</td>
<td>The presentation uses little relevant or accurate information, not even that which was presented in class or in the assigned texts. Little or no research is apparent.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking/Inquiry</td>
<td>The presentation is centered around a thesis which shows a highly developed awareness of historiographic or social issues and a high level of conceptual ability.</td>
<td>The presentation shows an analytical structure and a central thesis, but the analysis is not always fully developed and/or linked to the thesis.</td>
<td>The presentation shows no analytical structure and no central thesis.</td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>The presentation is imaginative and effective in conveying ideas to the audience. The presenter responds effectively to audience reactions and questions.</td>
<td>Presentation techniques used are effective in conveying main ideas, but a bit unimaginative. Some questions from the audience remain unanswered.</td>
<td>The presentation fails to capture the interest of the audience and/or is confusing in what is to be communicated.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of visual aids</td>
<td>The presentation includes appropriate and easily understood visual aids which the presenter refers to and explains at appropriate moments in the presentation.</td>
<td>The presentation includes appropriate visual aids, but these are too few, in a format that makes them difficult to use or understand, and/or the presenter does not refer to or explain them in the presentation.</td>
<td>The presentation includes no visual aids or visual aids that are inappropriate, and/or too small or messy to be understood. The presenter makes no mention of them in the presentation.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation skills</td>
<td>The presenter speaks clearly and loudly enough to be heard, using eye contact, a lively tone, gestures, and body language to engage the audience.</td>
<td>The presenter speaks clearly and loudly enough to be heard, but tends to drone and/or fails to use eye contact, gestures, and body language consistently or effectively at times.</td>
<td>The presenter cannot be heard and/or speaks so unclearly that s/he cannot be understood. There is no attempt to engage the audience through eye contact, gestures, or body language.</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8/16/11 – Introduction to Rubrics, Stevens & Levi
Point Matrices

- **A matrix** shows breakdown of possible points for an assignment.

- **Basic matrix**: simply list items without descriptions of what full credit or ideal work looks like:

 Example:

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pts.</td>
<td>Statement of Goal/Objective</td>
</tr>
<tr>
<td>7 pts.</td>
<td>Introduction & Theory</td>
</tr>
<tr>
<td>5 pts.</td>
<td>Procedure & Apparatus</td>
</tr>
<tr>
<td>15 pts.</td>
<td>Data</td>
</tr>
<tr>
<td>15 pts.</td>
<td>Calculation, Graphing & Results, Error Propagation</td>
</tr>
<tr>
<td>5 pts.</td>
<td>Conclusions & Analysis of Sources of Error</td>
</tr>
<tr>
<td>50 pts.</td>
<td>Total</td>
</tr>
</tbody>
</table>

- **BETTER matrix**: include brief descriptions of what fully met expectations looks like:

 - **Example**: (from sophomore/junior-level physics lab)

<table>
<thead>
<tr>
<th>Grading Criteria for PHY 274L: Written Reports</th>
<th>NAME: ____________________</th>
<th>Exp. #</th>
<th>TOTAL: ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) ABSTRACT: (5 pts.) ________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Objective(s): (1 pt.)</td>
<td>i. States, clearly and briefly, the purpose of the experiment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Method Summary: (2 pts.)</td>
<td>i. Describes the overall setup, materials, and procedures used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Results Summary: (2 pts.)</td>
<td>i. Overall results are given.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) INTRODUCTION: (5 pts.) ____________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Includes one or both of the following:</td>
<td>i. Scientific and/or historical significance of the experiment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Historical results and those from other sources and methods (e.g. Handbook of Chemistry and Physics).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) PROCEDURE/METHOD: (10 pts.) ____________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Procedure:</td>
<td>i. Clearly describes apparatus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Clearly describes the reasoning behind the setup.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figures:</td>
<td>i. Figures have captions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) THEORY: (10 pts.) ________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Derivation of principal formula(s):</td>
<td>i. Logical and correct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) All assumptions are stated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) All variables are defined.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) DATA & CALCULATIONS: (40 pts.) __________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Raw Data: (10 pts.)</td>
<td>i. Gives units and uncertainties, either estimated or calculated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Calculated Data: (20 pts.)</td>
<td>i. Gives propagated uncertainties with appropriate units.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Charts and graphs: (10 pts.)</td>
<td>i. Gives units, error bars, and labeled axes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Has informative caption/title.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant points are identified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) CONCLUSION: (10 pts.) _________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Results: (5 pts.)</td>
<td>i. Gives results with uncertainties.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Accuracy of results and limitations on accuracy: (5 pts.)</td>
<td>i. Gives the accuracy of the result stated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Considers the limitations of the results (i.e. what was the limiting factor in terms of accuracy)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) OVERALL: (20 pts.) _____________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) All references/materials cited: (3 pts.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Spelling & grammar, appropriate physical vocabulary, clarity of writing: (10 pts.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Title, well-organized, clear layout/format: (7 pts.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Distribute the matrix at start of course (with initial course syllabus) or when task is first assigned… not when the graded assignment is returned!
Meaning & Implications of Final Course Grades

UH Manoa Undergraduate Grade Definitions (from UH Manoa Catalog)

A+, A, A– = “excellent”
B+, B, B– = “above average”
C+, C = “average”
C–, D+, D, D– = “minimal passing”
F = “failure”

CR = “C” or above
NC = “C–” or below

What Really Is an Undergraduate “Passing” Grade?

• “C” not “C–” is lowest passing grade for many **major-required** courses and **prerequisites**
• “D” not “D–” is lowest passing grade for all **Gen Ed** (Core & Graduation Requirements) courses
• “D–” is lowest passing grade for **general credit**

Variations

• **Undergrad science LAB** grades (and grade curves) are typically more forgiving than **lecture** grades
 o Labs tend to stress participation, comprehensive write-ups, and collaborative work
 o Science labs: “A” = good to excellent
 “B” = adequate to good
 “C” = below average, but completed all work
 “D” or “F” = missing some experiments or lab reports

UH Manoa Graduate Grade Definitions (from UH Manoa Catalog)

• Graduate student grades (and expectations) are typically higher than undergraduate!
 o UH Manoa **graduate** grade definitions (UH Manoa Catalog) and unofficial meanings:
 A+, A, A– = “high achievement” (above-average to excellent)
 B+, B, B– = “meets expectations” (adequate/average)
 C+, C, C– = “below expectations” (usually means inadequate to failing!)
 D+, D, D– = “inadequate performance” (usually equivalent to failure)
 F = “failure”
 o Some departments limit the number of “C” grades that a grad student can have (and still qualify for master's degree) without repeating courses. Other graduate programs place hard limits on number of “C” grades allowed to remain enrolled.

Incompletes

• **Incomplete “I”** grades should be given to **undergraduates** only in cases of **extenuating** circumstances beyond the student’s control (family emergencies, medical emergencies, etc.)
 “A grade of I is given to a student who has not completed a small but important part of a semester’s work if the instructor believes that the incomplete was caused by conditions beyond the student’s control.” (UH Manoa Catalog)
 o Use “I” grades **late** in the semester, when only a **minority** of coursework remains to be done. If still early in the semester, encourage students instead to petition for a “late drop” or to withdraw (“W” grade), and to retake the course from the beginning.
 o “I” grades must be accompanied by a **reversion grade**. They automatically change into the reversion grade if not replaced by a letter grade by Apr. 1 or Nov. 1 of the following semester.

 • For **graduate-student** rules regarding Incomplete grades, see UH Manoa Catalog.
Calculating Final Course Grades

• Course grades are usually based on percentage/fraction of possible points earned

• Be sure to state weighting/breakdown in initial course syllabus:

 Example:

 10% Homework
 10% Quizzes
 20% Midterm #1
 20% Midterm #2
 40% Final Exam
 100% Total

• Design exam questions throughout course to achieve large spread in overall scores
 o Include some easy, some moderate, and a few challenging questions
 o A broad range in student scores makes application of a “curve” easier (see below)

Using a “Curve” (Norm-Based Grading):

 Example: 20% of class receive A’s, 25% B’s, 25% C’s, 30% D’s & F’s

Advantages:
 o Works well with large classes (> 100 students)
 o Counteracts exams that are too hard or too easy (and similar problems due to instructor inexperience)
 o Counteracts instructor-to-instructor differences — “shape” of curve can be determined by department (e.g., all Physics 151L lab TAs are required to apply similar curves)

Disadvantages:
 o Bad for small classes & labs (20 or 25 students)
 o Demoralizes students; promotes student competition instead of collaboration
 o Students cannot calculate/estimate own grade, and do not know final percentage-cutoffs until end of course

“CURVE” PHILOSOPHY: Final grades represent students’ relative performance.

Using Straight/Flat Percentages (Criterion-Based Grading):

 Example: >90%: A; >80%: B; >70%: C; >60%: D; <60%: F
 Or, for “tougher” courses: >85%: A; >70%: B; >55%: C; >40%: D; <40%: F

 o Best for experienced teachers already familiar with course and typical student ability
 o “Everyone can get an A” (theoretically) — good for small and advanced courses
 o Students CAN calculate/estimate own grade, and DO know grade cutoffs from the start of course

“STRAIGHT” PHILOSOPHY: Final grades represent students’ absolute performance.

Using a Flat+Curve Hybrid:

Example: “A total course score of >90% guarantees a course grade of A– or better; >80% guarantees a B– or better; etc.; BUT these cutoffs may be lowered at the discretion of the instructor during final grade calculation.”

• Be explicit whether plus/minus grades will be used (or deliberately not used)

• Strive for consistency with departmental policy/tradition and with other TAs’ grading policies
 o Example: D’s and F’s are rarely included in science lab curves, and are usually reserved for students with missing work
Keeping Records

- **Keep thorough electronic records** of all grades (like an Excel spreadsheet)
- **Retain unclaimed assignments, exams, etc.** (that are not picked up by students) **through the end of the following semester.** (UH Manoa policy)
- I recommend that you **keep your final gradesheet files forever.**
 - Export a final copy of all online assignments & scores from Laulima or any classroom management system.
 - Archive a **paper copy** of your final gradesheet. Leave a copy with your supervising professor and/or department office.

Dealing with Cases of Academic Dishonesty

- If cheating/plagiarism is suspected, make **photocopies** & prepare evidence to take to supervising professor
- **Meet** with offending student(s) alongside supervising professor, show the evidence, and let the student respond to the allegation
- Decide on appropriate **penalty** with professor, and decide on optional referral to Office of Judicial Affairs
- Student has right to appeal your action (first to Dept. Chair, then Assoc VC for Students, then to Academic Grievance Committee)

- For UH Manoa definitions of “cheating” and “plagiarism” and related policies, see “Campus Policies” in the **UH Manoa Catalog. Passage on “Disciplinary Action”:**

 “The faculty member must notify the student of the alleged academic misconduct and discuss the incident in question. The faculty member may take academic action against the student as the faculty member deems appropriate. These actions may be appealed through the **Academic Grievance Procedure**, available in the Office of Judicial Affairs. In instances in which the faculty member believes that additional action (i.e., disciplinary sanctions and a UH Manoa record) should be established, the case should be forwarded to the Office of Judicial Affairs [Queen Lili'uokalani Center for Student Services, Rm. 207].”